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Abstract. We introduce a three-dimensional lattice gas model to study the glass transition. In this model
the interactions come from the excluded volume and particles have five arms with an asymmetrical shape,
which results in geometric frustration that inhibits full packing. Each particle has two degrees of freedom,
the position and the orientation of the particle. We find a second order phase transition at a density
ρ ≈ 0.305, this transition decouples the orientation of the particles which can rotate without interaction in
this degree of freedom until ρ = 0.5 is reached. Both the inverse diffusivity and the relaxation time follow a
power law behavior for densities ρ ≤ 0.5. The crystallization at ρ = 0.5 is avoided because frustration lets
to the system to reach higher densities, then the divergencies are overcome. For ρ > 0.5 the orientations
of the particles are coupled and the dynamics is governed by both degrees of freedom.

PACS. 64.70.Pf Glass transitions

1 Introduction

In the last years, a great deal of work has been done to ob-
tain a fundamental understanding of the glass transition.
Many questions about the equilibrium and the dynami-
cal properties of the glassy state remain ananswered. It
is not clear if there is a true phase transition and what
is the role that geometric frustration plays on it. The re-
lations between the equilibrium and the dynamical prop-
erties are not understood [1]. The mode coupling theory
for supercooled liquids [2] predicts the existence of a tem-
perature Tc at which there is a crossover from a liquid to
a glassy state. In the glassy state the dynamics would be
dominated by complex activated processes. For tempera-
tures T > Tc but close to Tc there is a power law behavior
of the relaxation time and also of the inverse diffusivity. It
is not understood whether Tc is a purely kinetic transition
temperature [2] or if it is a true thermodynamic glass tran-
sition which is kinetically avoided [3]. Several lattice gas
models have been used to simulate glassy systems, they
are the simplest microscopic models. The discretization of
the position, time, and internal degrees of freedom led to
enormous computational efficiency and in some cases to an
analytical approach. They contain some of the more im-
portant physical features of real systems and have repro-
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duced some aspects of the glassy phenomenology. As ex-
amples we have the Hard Square Model (HSM) [4], the Ki-
netically Constrained Model (KCM) [5,6], the Frustrated
Ising Lattice Gas Model (FILGM) [7], the one introduced
by Ciamarra et al. (CM) [8], and recently the Lattice
Glass Model (LGM) [9]. The LGM model with density
constraint l = 0 is equivalent to the the three-dimensional
HSM model also called Hard Cubic Model (HCM). The
LGM model relates the glass transition to a first order
phase transition.

In this paper we consider a three-dimensional lattice
gas model, which contains as main ingredients only geo-
metric frustration without quenched disorder and without
kinetic or density constraints, as quenched disorder is not
appropriate to study structural glasses and kinetic or den-
sity constraints are some how artificial. In the HSM, HCM,
CM, and LGM models density constraints are imposed, in
the KCM model kinetic constraints are present, and in the
FILGM model there is quenched disorder. In our model
the interactions come from the excluded volume and par-
ticles have five arms with an asymmetrical shape, which
results in geometric frustration that inhibits full packing.
Similar models have already been proposed and studied
in two-dimensional systems [10–12] and applied to study
granular material [13].

2 The model

Our model is a generalization to three dimensions of the
two-dimensional model studied in reference [12]. It can
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Fig. 1. Schematic picture of one particular configuration in a
system size of N = 23 and density ρ = 0.5. Shadow spheres
represent holes in the system. Black spheres are particles with
five arms each one.

be considered as an illustration of the concept of frustra-
tion arising as a packing problem. A fundamental mys-
tery in the formation of glasses is the relationship of liq-
uid structure to dynamics. The two-dimensional model
studied in reference [12] was proposed for systems which
have molecules with a T-shaped structure such as ortho-
terphenyl [10]. Here we introduce a three-dimensional
model which loosely models a system which has molecules
with a square pyramidal structure, for example BrF5

or XeOF4. We have particles with five arms and they oc-
cupy the vertices of a cubic lattice with one of six possible
orientations. Assuming that the arms cannot overlap due
to excluded volume, we see that only for some relative ori-
entations two particles can occupy nearest-neighbor ver-
tices. Consequently, depending on the local arrangement
of particles, there are sites on the lattice that cannot be oc-
cupied (see Fig. 1). This type of “packing” frustration thus
induces defects or holes in the system. We impose periodic
boundary conditions in the cubic lattice of size N = L3.
The maximum of density is ρmax = 3/5 at which all pos-
sible bonds are occupied by an arm. Here we have two
degrees of freedom for each particle, the position and the
orientation of the particle. This model is the HCM model
when the particles have six instead five arms. Our model
would be also similar to the LGM model with the den-
sity constraint l = 1. We will compare the results found
in our model with the ones obtained in these two mod-
els. We have used two algorithms in order to make the
simulations. The first one (CA) is the Monte Carlo simu-
lation at fixed density in the canonical ensemble, we have
simulated the diffusion and rotation dynamics of the par-
ticles by the following algorithm: i) Pick up a particle at
random; ii) Pick up a site at random between the six near-
est neighbor ones; iii) Choose randomly an orientation of
the particle; iv) If it does not cause the overlapping of
two arms, move the particle in the given site with the
given orientation; v) If the diffusion movement is not pos-
sible, choose a random orientation and try to rotate the
particle to this new orientation; vii) Advance the clock
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Fig. 2. Diffusion constant D as a function of density ρ for
a system size of N = 143. The fitting function is a power
law D = 2.11(0.523 − ρ)2.45. Inset: the inverse of the density
as function of µ on a lattice of size N = 143. The data are
obtained from the GCA with 2 × 107 Monte Carlo Steps per
particle at a fixed increasing rate of the chemical potential
between µ = 0 and µ = 27.

by 1/N , where N is the number of sites, and go to i). The
second algorithm (GCA) is the grand canonical ensemble,
the diffusion and rotation dynamics is as in the CA sim-
ulations but now a reservoir with chemical potential µ is
coupled to each lattice site which can create (if it does not
cause the overlapping of two arms) or destroy particles.
As we expect the GCA simulation reaches the equilibrium
faster. We will use the GCA simulation in order to find
the behavior of the density ρ with µ [9].

3 Results

We first study a possible first order phase transition in
our model. In the inset of Figure 2 the inverse of the den-
sity is plotted as a function of the chemical potential. As
in reference [9] we make GCA simulations to obtain this
figure. Here µ plays the role of the inverse of the tempera-
ture 1/T [7,10] and it is related to the inverse of the equi-
librium concentration ρ. A maximum of density very close
to ρmax is reached without any discontinuity, although we
observe finite-size effects which prevent to reach ρmax for
the lattice sizes studied here. So, first order phase transi-
tion is not present in our system. In the HCM model we
also observe similar behavior of the density with µ reach-
ing the maximum of density continuously, ρmax = 0.5 in
the HCM model. Instead, in the LGM model with l ≥ 1
there is always a first order phase transition [9].

We now calculate the diffusion coefficient D from the
mean-square displacement of the particles at very long
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times with the CA simulations. The values obtained for D
are well fitted by a power law close to ρc = 0.52 ± 0.005
and for densities lower than ρ = 0.5, D ∝ (ρc − ρ)γ with
γ = 2.45±0.01 (see Fig. 2). This anomalous behavior of D
near of ρc would indicate a crossover density, from liquid
to glass phase, where activated processes dominate in the
glass phase. As it happens in the HSM model [14] the finite
size effects for the diffusivity in the HCM model are very
large when we do CA simulations, it is because the parti-
cles can be enclosed in cages and the diffusion is blocked.
It prevents to reach densities close to the maximum den-
sity. Nevertheless, in our model the finite size effects are
only important for ρ > 0.58 when N = 143. This is be-
cause our model has two degrees of freedom and rotations
prevent to find blocked configurations for ρ < 0.58.

In order to understand what happens at ρ ≈ 0.5 we
study the following microscopic order parameter. As in
anti-ferromagnetic systems, the cubic lattice is divided
into two interpenetrating sublattices (A and B), a site
in a sublattice has six nearest neighbor sites which belong
to the other sublattice. The order parameter is defined as

φ =
ρA − ρB

ρA + ρB
, (1)

where ρA and ρB are the equilibrium concentrations of the
particles in the sublattices A and B and we have ρ = ρA +
ρB. This parameter can be used to study concentration
sublattice ordering. When the particles prefer to stay in
one of these sublattices then φ �= 0. In the left inset of
Figure 3 we show φ as a function of the density. We can
see that it is different to zero for ρ > ρf ≈ 0.3 and it
increases until ρ ≈ 0.5, then there is a maximum. For
higher densities it decreases linearly with the density. In
Figure 3 we show the concentration in both sublattices.
We see that at ρf the concentrations ρA and ρB begin to
be different each other, the particles prefer to stay in a
sublattice. The concentration in the sublattice A has the
maximum value when ρ = 0.5 is reached. A sublattice is
full of particles at this concentration while the other one is
in practice empty. The particles begin to occupy the empty
sublattice for densities higher than ρ = 0.5 remaining the
other sublattice full, then the parameter φ decreases. Here
we observe that there are not frozen particles at these
densities, ρA and ρB are equilibrium concentrations. The
order parameter φ can take positive and negative values, it
depends on which sublattice has higher density for ρ > ρf ,
in Figure 3 we have φ > 0 for ρ > ρf because ρA >
ρB. Similar behavior for the parameter φ is found in the
HCM model but ρf ≈ 0.22 is lower than the one obtained
in our model and the system crystallizes at ρ = 0.5, its
maximum of density, then the particles are frozen in a
sublattice and it is not possible to reach higher densities.
So, the last part of Figure 3 (for ρ > 0.5) is not found
in the HCM model. As we will see below at ρf there is
a continuous phase transition in our model and also in
the HCM model. In the LGM model with l = 1, we have
found a first order phase transition with a discontinuity
of the density, when is plotted as a function of µ, from a
density ρ ≈ 0.32 to a density ρ = 0.5, then the system
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Fig. 3. Concentration of particles in sublattices A, ρA (aster-
isks), and B, ρB (solid circles), as a function of the density ρ
for a system size of L = 14. Left inset: order parameter φ as
a function of the density ρ. Right inset: compressibility κ as a
function of the density ρ.

crystallizes and the particles are frozen in a sublattice.
When our model has particles with four arms instead five
arms no phase transition is found.

We now study the equilibrium second order phase tran-
sition in our system. For that, we define the compressibil-
ity by the following expression

κ =
1
N

∑

i

(〈
n2

i

〉 − 〈ni〉2
)

, (2)

where ni = 0, 1 is the occupation number of site i
and 〈· · ·〉 indicates equilibrium average. In the right in-
set of Figure 3 we see the behavior of κ with the density.
We find that the compressibility is different to zero for
densities higher than ρf ≈ 0.305 and it has a maximum
at ρ = 0.5, decreasing for higher densities. This behavior
is similar to the one found for the parameter φ. The asso-
ciated susceptibility χ is given by χ = N

(〈κ2〉 − 〈κ〉2)
and the Binder’s cumulant is g = (3 − 〈κ4〉/〈κ2〉2)/2.
Around a continuous phase transition χ and g should obey
the finite-size scaling χ(ρ) = L2−ηχ̃

[
L1/ν(ρ − ρf)

]
and

g(ρ) = g̃
[
L1/ν(ρ − ρf)

]
where χ̃ [x] and g̃ [x] are universal

functions and ρf is the critical density. From the finite size
scaling (see Fig. 4) we find a continuous phase transition at
ρf = 0.305±0.005 which belongs to the three-dimensional
Ising universality class, η = 0.04±0.01 and ν = 0.63±0.05.
This is a liquid-liquid phase transition. In the HCM model
we have found a second order phase transition which also
belong to the same universality class but with ρf ≈ 0.22.
In Figure 2 we can see that the diffusion constant is not
affected by the second order phase transition.
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Fig. 4. Finite size scaling of χ and g (inset) for lattice sizes L =
8 (•), 10 (�), 12 (�), 14 (�), and 16 (�). ρf = 0.305 ± 0.005,
η = 0.04 ± 0.01, and ν = 0.63 ± 0.05.

We now study the relaxation of the autocorrelation
functions of the density fluctuations

Φq(t) =
〈ρ∗q(t′ + t)ρq(t′)〉

〈|ρq|2〉 , (3)

where 〈· · ·〉 denotes average over the reference time t′
and ρq is the Fourier transform on the lattice of
the density

ρq(t) =
1
N

n∑

i=1

e−iq.ri(t), (4)

where ri(t) is the position of the ith particle at time t,
n is the number of particles and q is the wave number.
Because of the periodic conditions on the cubic lattice
q = (2π/L)(nx, ny, nz), with nx, ny, nz = 1, · · · , L/2.
Figure 5 shows Φq(t) for q = (π/3, π/3, π/3) and differ-
ent densities. We can see a two-step relaxation decay for
ρ > 0.5, the second relaxation step can be fitted by a
stretched exponential form, f(t) = f0 exp

[
(t/τ)β

]
where

the exponent β = 0.94± 0.01 remains constant with ρ for
ρ ≥ 0.515. For ρ < 0.49 we only have a one-step relaxation
decay. The relaxation time τ can be obtained from Φq(t).
We find that it is proportional to the inverse of the diffu-
sivity, τ ∝ D−1, for the whole range of densities studied
here (see inset of Fig. 5). Thus, the relaxation time follows
a power law at ρ < ρc with the same exponent than the
one obtained in the power law of D−1 (see Fig. 2). The
characteristic time scale depends on the number of arms
we take into account in our model and the dimension of
the system [12]. We have found that the exponent γ is dif-
ferent when the system has different number of arms and
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Fig. 5. Correlation functions of the density fluctuations Φq(t)
for q = (π/3, π/3, π/3), system size L = 14, and densities (from
bottom to top) ρ = 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.505,
0.51, 0.515, 0.52, 0.53, and 0.54. The solid lines are fitting
functions corresponding to stretched exponential functions. For
ρ ≥ 0.515 we have β = 0.94 ± 0.01. Inset: D as a function of
the relaxation time τ . The arrow shows the density ρ = 0.5.
The solid line is the fitting function D = 0.135/τ .

dimension. The behavior of the exponent β also depends
on the number of arms and dimension of the system.

We now present the results for the self-part of the auto-
correlation function of the density fluctuations, defined as

Φs
q(t) =

1
Nρ

n∑

i=1

〈
eiq(ri(t

′+t)−ri(t
′))

〉
, (5)

where 〈· · ·〉 denotes average over the reference time t′.
Figure 6 shows Φs

q(t) corresponding to q = (π, 0, 0) for
densities ρ = 0.35, 0.45, 0.5, and 0.53. For the whole range
of densities studied here we find that the whole time in-
terval of Φs

q(t) can be fitted by a stretched exponential
function where the exponent β depends on the density. In
the inset of Figure 6 we show β as a function of the density.
The exponent β decreases with the density until a density
near ρf is reached. Starting from this density, which corre-
sponds to the second order phase transition, the exponent
increases until ρ = 0.5 is reached. For ρ > ρc it becomes
constant (within the error bars) β ≈ 0.93. The relaxation
time obtained from the fit of Φs

q(t) is proportional to the
inverse of the diffusivity. This behavior is similar to the
one shown in the inset of Figure 5 because the relaxation
time of the autocorrelation function of the density fluctu-
ations (Eq. (3)) is proportional to the relaxation time of
its self-part (Eq. (5)).

In order to study the role of the orientation of the
particles we define a self-overlap parameter similar to that
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for q = (π, 0, 0) and densities ρ = 0.35, 0.45, 0.5, and 0.53.
Dotted lines are fitting functions corresponding to stretched
exponential functions. Inset: Parameter β of the stretched ex-
ponential function for Φs

q(t) as a function of the density (for
each density we plot the error bar of β).

defined in [15] for liquids but which also takes into account
the orientation of the particles, besides their position. The
orientation of a particle is defined by the discrete values
of the two orthogonal angles θi = 0, π/2, π, or 3π/2 and
ϕi = 0, π/2, π, or 3π/2. We define the self-overlap as

q(t) =
1

Nρ

n∑

i=1

〈ni(t′)ni(t′ + t) cos [θi(t′ + t)

−θi(t′)] cos [ϕi(t′ + t) − ϕi(t′)]〉 , (6)

here 〈· · ·〉 denotes average over the reference time t′. If all
the particles have the position and the orientation frozen
then q(t) = 1. Figure 7 shows the parameter q(t) for dif-
ferent values of the density. The plateau becomes visible
for densities higher than ρ ≈ 0.5. From this density there
are an important number of particles which have frozen
the position and the orientation for a long time. The num-
ber of frozen particles and the time during they are frozen
increase with the density. We can fit the second relaxation
step with the stretched exponential function, but now the
exponent β decreases with the density from β = 0.94 for
ρ = 0.52 until β = 0.77 for ρ = 0.58. We have also mea-
sured the rotational autocorrelation function and found
that it is equal to the self-overlap parameter for the den-
sities shown in Figure 7. It is because the relaxation time
of orientation degree of freedom is smaller than the relax-
ation time of the position degree of freedom. So geomet-
ric frustration couples the orientations of the particles for
ρ > 0.5.
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Fig. 7. Relaxation functions of the self-overlap q(t) for system
size L = 14 and densities (from bottom to top) ρ = 0.45, 0.46,
0.47, 0.48, 0.49, 0.5, 0.51, 0.515, 0.52, 0.53, 0.54, 0.55, 0.56,
0.57, and 0.58.

4 Conclusion

We have proposed a three-dimensional lattice gas model,
based on the concept of geometric frustration which is gen-
erated by the particle shape. In this model a second order
phase transition decouples the orientation of the parti-
cles which can rotate without interaction in the orienta-
tion degree of freedom until ρ = 0.5 is reached. This is
because in practice the particles remain all the time in
a sublattice and then the particles can rotate freely. For
densities higher than ρ = 0.5 geometric frustration begins
to work and rotations are governed by complex collective
processes. Then, the two degrees of freedom are important
in the diffusivity movement of the particles. For ρ ≤ 0.5
the system is going to a crystalline state with all the par-
ticles frozen in a sublattice, this brings to a power law
divergency of the relaxation time and the inverse of dif-
fusivity for ρ < 0.5. But frustration lets to the system
reach higher densities and crystallization is avoided and
the divergencies are overcome. Then, vibrational effects
are observed which bring to the two-step relaxation decay
in the density correlations and in the self-overlap parame-
ter. Thus, the glass transition is purely a kinetic transition
in our model. Geometric frustration plays a fundamental
role, without frustration the arrest would be close to ρc,
but also the second order phase transition is very impor-
tant, which decouples the orientation of the particles. In
the two-dimensional model [12], which has not second or-
der phase transition, we do not observe these anomalies
in the diffusivity and relaxation time. We have performed
simulations with a similar model which has particles with
four arms instead five arms. This model has not got sec-
ond order phase transition and we have not observed the
anomalies in the diffusivity and in the relaxation time.
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So we think that there is a connection between the sec-
ond order phase transition and the dynamics observed at
higher densities. The order parameters φ and κ exhibit a
maximum at the glass transition ρ ≈ 0.5. We have found
that the diffusion constant is not affected by the second
order phase transition. The self-part of the autocorrela-
tion function of the density fluctuation can be fitted by
a stretched exponential function with an exponent β that
has a minimum value at the second order phase transition
and a local maximum at the glass transition.

We have shown that, despite its simplicity, our model
exhibits many of the glassy features observed in real sys-
tems. Our model is going to a crystalline state for ρ � 0.5
where the particles should be frozen in a sublattice. The
crystallization is avoided due to the geometric frustra-
tion. Then, we observe some properties found in the glassy
state, i.e., the anomalies in the diffusivity and in the re-
laxation time, the two step relaxation decay, vibrational
effects, etc. Of course this model does not capture all the
phenomena observed in the glass state and it could be due
to the fact that the model is overly simplified, with respect
to real glassy liquids. The decoupling-coupling mechanism
of rotations, which is responsible of the anomalies in the
diffusivity and relaxation time, seems to be strictly related
to our model but could be a mechanism present in some
real systems with packing frustration.
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14. K. Froböse, J. Stat. Phys. 55, 1285 (1989); J. Jäckle, K.
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